
Bayesian Analysis (extreme introduction)

Theme of workshop (and book): Analyzing HMs using both classical and

Bayesian methods b/c if you want to be an effective user, you need to un-

derstand and be able to use both.

1. Parametric inference

2. Prior distributions.... everything is a random variable

3. Posterior inference

4. MCMC

5. Relevance to hierarchical models such as occupancy models
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1. Parametric Inference

• Both Bayes or classical/frequentist/likelihood paradigms are parametric

– This means: we make explicit probability model assumptions about

“data” and “biological process” and assume those assumptions

are truth

– Not an “approximation to truth” but actual truth. (try saying this in

a paper)

• With explicit probability models describing possible observables (outcomes

of an experiment) we can create the joint probability distribution of

all random variables

– Bayes or classical inference is based on doing some kind of analysis

of this joint probability distribution using numerical or computational

methods.
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1. Parametric Inference

Two main flavors of parametric inference

• Classical inference: Joint probability distribution of observa-

tions forms the likelihood. We maximize it to obtain MLEs and

do other fun things to it.

• Bayesian inference: Based on the posterior distribution – pro-

portional to the joint probability distribution of all random quantities

in the model: data, random effects, parameters.
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2. Random variables

How are random variables used in Bayesian and classical analysis?

• The DATA are realizations of a random variable, from some probability

distribution:

y ∼ f (y|θ), θ is a parameter.

e.g., Capture-recapture study over 5 occasions: y ∼ Binomial(5, p)

e.g., Occupancy study over 5 occasions: y ∼ Binomial(5, p)

• In addition, in Bayesian analysis all unknown quantities in a model

are random variables. Includes “parameters” but also latent variables (“random

effects”)
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2. Random variables

• The prior distribution: θ ∼ g(θ) is a prior distribution which describes

possible values of the parameter θ in the absence of information from data.

Prior to the experiment.

Prior can be chosen to reflect prior “beliefs” or information

Can be subjective, but this doesn’t really do us much good in practice.

Over-sold aspect of Bayesianism.

Vague or non-informative (also sometimes “objective” priors): Prior might

be chosen to reflect absence of specific information

• Example: Capture-recapture. Before I collect data, I don’t know anything

about p: p ∼ Uniform(0, 1).

• Ignorance: NOT TRUE!!!! You can’t possibly initiate a study without

having pretty strong ideas of what you’re going to observe. Yet Bayesians all

the time use “non-informative” or “flat” priors.
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2. Random variables

• Frequentists have random effects too but they like to make a distinction

between random effects and parameters (not random). Why?

• Bayes is coherent: Everything is a random variable
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The Sad Caricature: “Parameters are random”

AKA: the “fixed but unknown” canard

“The difference between Bayesian and frequentist inference is that, in

Bayesian analysis, parameters are random but, in frequentist analysis, they

are fixed but unknown.”

• For a given data set, parameter values are fixed but unknown just like a

frequentist. i.e., there is a single data-generating value, picked by nature,

and you don’t know it.

• They are not “random” anyhow but rather realizations of a random vari-

able. Nature generated them from some distribution. (is that the same

thing? Dude, thats totally random.)

• Even qualified, “random variables” is not a diagnostic characteristic of

Bayesianism: Random effects are common everywhere – they are features

of models, not of inference paradigms.

How is the randomness used to facilitate inferences? That is the key issue.
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3. Posterior Inference

The posterior distribution: The probability distribution of everything that

is unknown given what is known. Usually we just say “parameters given data”:

f (p|y)

Arises by use of basic rules of probability, because everything is a random

variable. Bayes’ rule:

f (p|y) =
f (y|p)g(p)

f (y)

• it is a probability distribution for the parameter(s)!

• characterize uncertainty in the parameter values using explicit probability

statements

• e.g., Pr(L ≤ p ≤ U) = “Bayesian confidence interval” (remember in

classical analysis it is the interval that is random).

• In general, report summaries of the posterior distribution: mean, mode,

variance, etc..
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3. Posterior Inference

• Posterior inference is a direct consequence of viewing things as random

variables and our natural tendency to characterize uncertainty using probability.

• Sometimes the posterior is directly proportional to the likelihood in which

case the inferences Bayesians and frequentists make are hardly different numer-

ically. But conceptually they are extremely different.

• Bayesians make probability statements about unknown parameters. Fre-

quentists do not. They make probability statements about procedures that

they concoct. So you have things like (frequentist) “If I repeated my study a

large number of times then, in the long run, 95% of the data sets generated will

produce confidence intervals that contain the truth.”

• But what about this one data set that I have? The Bayesian says “given

the data you actually have, there is a 95% chance that N is between NL and

NU”
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Illustrations of Parametric Inference Ideas for Pres-
ence/Absence Data (Logistic Regression)

• Observations:

y1, y2, . . . , yn

• Probability model for observations

e.g., logistic regression (for binary data):

(1) Binomial probability mass function

yi ∼ Bin(yi; 1, pi)

with

logit(pi) = β0 + β1xi

(2) and y1, . . . , yn are mutually independent

• What do we do with this probability model to achieve formal inference

about β = (β0, β1)?
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Classical Inference

Joint distribution:

f (y1, y2, . . . , yn; β0, β1) =


n∏
i=1

Bin(yi;β)



Likelihood = joint distribution regarded as a function of β:

L(β0, β1; y1, y2, . . . , yn) ≡

n∏
i=1

Bin(yi|β)



• Maximize it to obtain the MLE β̂

• 2nd derivative of log(L) w.r.t. β̂ is the Fisher

Information – inverse is “asymptotic variance”

• Function of the parameters (not y)!

• It is not a probability distribution
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Example: Ordinary Logistic Regression

Binary state variable:

zi ∼ Bin(ψi)

logit(ψi) = β0 + β1xi

R script likeBayes.R

# -------------------------- Simulate data ------------------------------

# Create a covariate called vegHt

nSites <- 100

set.seed(443) # so that we all get the same values of vegHt

vegHt <- runif(nSites, 1, 3) # uniform from 1 to 3

# Suppose that occupancy probability increases with vegHt

# The relationship is described by an intercept of -3 and

# a slope parameter of 2 on the logit scale

# plogis is the inverse-logit (constrains us back to the [0-1] scale)

psi <- plogis(-3 + 2*vegHt)

# Now we go to 100 sites and observe presence or absence

# Actually, let’s just simulate the data

z <- rbinom(nSites, 1, psi)
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Strategy for classical estimation based on likelihood: Express the likelihood

as an R function and then use the standard function optim or nlm to maximize

it.

# This is the negative log-likelihood.

negLogLike <- function(beta, y, x) {

beta0 <- beta[1]

beta1 <- beta[2]

psi <- plogis(beta0 + beta1*x) # inverse-logit

likelihood <- psi^y * (1-psi)^(1-y) # same as:

# likelihood <- dbinom(y, 1, psi)

return(-sum(log(likelihood)))

}

# Look at (negative) log-likelihood for 2 parameter sets

negLogLike(c(0,0), y=z, x=vegHt)

negLogLike(c(-3,2), y=z, x=vegHt) # Lower is better!

# Let’s minimize it

starting.values <- c(beta0=0, beta1=0)

opt.out <- optim(starting.values, negLogLike, y=z, x=vegHt, hessian=TRUE)

mles <- opt.out$par # MLEs are pretty close to truth
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Bayesian Inference

• Parameters are realizations of random variables:

g(β0, β1) ≡ [β0, β1] (prior distribution)

• Joint distribution:

f (y1, y2, . . . , yn, β0, β1) =


n∏
i=1

Bin(yi;β)

 g(β0, β1)

• We can condition on the data – i.e., compute the conditional

distribution:

π(β0, β1|y1, y2, . . . , yn) =
f (y1, y2, . . . , yn, β0, β1)

f (y1, y2, . . . , yn)

(because everything is a r.v.)

To be continued.......
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4. How to do Bayesian Analysis: MCMC

The posterior:

π(β0, β1|y1, y2, . . . , yn) =
f (y1, y2, . . . , yn, β0, β1)

f (y1, y2, . . . , yn)

• Computing the denominator is computationally expensive, and sometimes

not even possible.

• Usually not recognizable as a “named” distribution.

• So we use Markov chain Monte Carlo, MCMC: simulation methods for

sampling from the posterior distribution which do not require that we know

the denominator, or ever have to evaluate it.
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4. How to do Bayesian Analysis: MCMC

We calculate features of the posterior distribution from the posterior samples

using Monte Carlo averages.

e.g., if we obtain p(1), p(2), . . . , p(M) from the posterior distribution then

Ẽ(p|y) =
1

M

∑
i
p(i)

Monte Carlo error exists: Difference between MC average and the feature

it’s meant to estimate. Controllable by increasing M .

The topic of MCMC is too vast to cover here.

We use a “Metropolis within Gibbs sampling” algorithm for everything, or

let BUGS deal with it.
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Metropolis-within-Gibbs Sampling

Iterative sampling of parameters from the full conditional distributions (one

for each parameter):

[β0|y, β1] = [y|β0, β1][β0]/[y]

[β1|y, β0] = [y|β0, β1][β1]/[y]

In many/most problems we cannot compute [y] and therefore cannot identify

the fc as a “named” distribution to simulate from. So rules are invented for

drawing random variables from distributions that cannot be identified precisely.

The Metropolis algorithm is one such rule.
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The Metropolis Algorithm

(1) For a candidate value β∗0 simulated from some symmetric proposal dis-

tribution: Symmetric if h(x|y) = h(y|x) (not part of the model)

(2) Accept that value with probability

r = [β∗0 |y, β1]/[β0|y, β1]

(3) Do also for β1

Handy stuff:

• The marginal distribution of y (i.e., denominator of the fc) cancels, so we

don’t need to know what it is.

• To use the Metropolis algorithm we only have to evaluate known distribu-

tions
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A Basic MCMC Algorithm: Logistic regression

(0) Pick starting values for β0 and β1. At iteration 1 of the algorithm, these

are the current values of the parameters

(1) Generate a candidate value of β0 from a symmetric proposal distribution.

e.g., centered on the current value:

β∗0 ∼ Normal(β0, δ
2)

(The proposal is not part of the model!)

(2) Accept the candidate value with probability:

r = [β∗0 |y, β1]/[β0|y, β1]

then β∗0 becomes the current value.

(3) Repeat for each parameter in the model.
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Remarks on Metropolis-within-Gibbs Algorithm

• Heuristic: This algorithm has us simulate candidate values somehow and

then accept values that have higher posterior probability (conditional on other

parameters).

• The long-run frequency of “accepted” values is that of the target posterior

density!

• Note: If the prior is constant, this MCMC calculation is based on repeated

evaluations of the likelihood only. So, if you write a function to do MLE you

can also do MCMC.

• We have a function to evaluate the likelihood for a given value of the

parameters. Using MCMC we have to do this over-and-over again....
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MCMC (MwiG) for Logistic Regression

1. What prior should we use?

β0 ∼ Norm(0, 10)

β1 ∼ Norm(0, 10)

2. The full conditionals look like:

[β0|y, β1] ∝
∏
i
Bin(yi|β0, β1)

 g(β0)

3. In R, this looks like:

beta0<- some value

beta1<- some value

fc.beta0<- exp(-1*negLogLike(c(beta0,beta1),y,x))*dnorm(beta0,0,10)

fc.beta1<- exp(-1*negLogLike(c(beta0,beta1),y,x))*dnorm(beta1,0,10)
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Implementation for simulated data:

niter <- 50000

out <- matrix(NA, niter, 2) # create a matrix to save the MCMC output

colnames(out) <- c("beta0", "beta1")

# Initialize the parameters, likelihood, and priors

beta0 <- starting.values[1]

beta1<- starting.values[2]

loglike <- -1*negLogLike(c(beta0,beta1), z, vegHt)

logprior <- dnorm(c(beta0,beta1), 0, 10, log=TRUE)

for(i in 1:niter) {

# propose candidate values of beta

beta0.cand <- rnorm(1, beta0, 0.3) # 0.3 is tuning parameter

# evaluate likelihood and priors for candidates

loglike.cand <- -1*negLogLike(c(beta0.cand,beta1), z, vegHt)

logprior.cand <- dnorm(beta0.cand, 0, 10, log=TRUE)

# Compute Metropolis acceptance probability

Metrop.acceptance.prob <- exp((loglike.cand+logprior.cand) -

(loglike + logprior[1]))

# Keep the candidates if they meet the criterion

if(runif(1) < Metrop.acceptance.prob) {

beta0 <- beta0.cand

loglike <- loglike.cand

logprior[1] <- logprior.cand

}

#### Repeat for beta1

.

.

.

} # closes main MCMC loop
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5. Inference for Hierarchical Models

HMs have 1 or more “intermediate” models/levels/stages involv-

ing a latent variable (random effect).

Two canonical examples of HMs in ecology:

• Modeling species occurrence – “occupancy models”

• Modeling species abundance – “N-mixture models” (and related)
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Example: Modeling occurrence of a species

• yi = {0, 1} observations of presence/absence at site i

• zi = {0, 1} state-variable true presence or absence

Observation model:

yi|zi ∼ Bernoulli(zip)

p = probability of detecting species given that it is present

Process model:

zi ∼ Bernoulli(ψi)

logit(ψi) = β0 + β1xi
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Example: Modeling Abundance from Point Counts

• yi = count of birds at point i

• Ni = state-variable population size at point i

Observation model:

yi|Ni ∼ Binomial(Ni, p)

Ni = local population size

p = probability of encountering an individual

Process model:

Ni ∼ Poisson(λi)

log(λi) = β0 + β1xi
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Analysis of HMs

• In addition to “data” and “parameters” hierarchical models have one or

more intermediate levels of latent variables or random effects.

• Bayesian analysis proceeds without any novel considerations. We apply

MCMC to the joint distribution and we also update the random effects using

our MCMC algorithm.

• Classical analysis by likelihood. We have to compute the marginal likeli-

hood by removing the latent variables by integration or summation.
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Bayesian Analysis

• Nothing is special about this model. Since everything is a random variable

we can compute the joint distribution:

f (y1, y2, . . . , yn, z1, . . . , zn, p,β) =


n∏
i=1

J∏
j=1

[yij|zi, p][zi|β]

 [β]

• Posterior characterized by MCMC – Metropolis/Gibbs:

parameters:

[β|y, z]

[p|y,β]

latent variables:

[zi|y, z−i, p,β] = [zi|y, p,β]

The posterior is fully characterized

by this set of conditional distribu-

tions
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Classical Analysis of Random Effects

INTEGRATED (marginal) LIKELIHOOD:

• Remove random effects from the conditional likelihood by

integration

• The distribution of yi unconditional on the random effect:

f (yi|β, p) =
∫ 

J∏
j=1

f (yij|zi, p)

 g(zi|β)dzi

• Not a function of zi anymore

• Maximize to obtain MLEs of p, β

• For discrete latent variable, replace
∫

by
∑
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Example: Occupancy Model

Observation model:

yij ∼ Bin(J, p) if zi = 1

yij = 0 if zi = 0

State model:

zi ∼ Bin(ψi)

logit(ψi) = β0 + β1xi

What is the marginal likelihood for y?
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Computing the Marginal Likelihood

• z is a discrete random variable

• Law of total probability

Pr(y) = Pr(y|z = 1)Pr(z = 1) + Pr(y|z = 0)Pr(z = 0)

• Marginal likelihood for total detections, yi:

[yi|p, ψ] = Bin(yi|p)ψ + 1(yi = 0)(1− ψ)

• Zero-inflated binomial. Can be maximized easily to obtain MLEs.

• PRESENCE or unmarked function occu
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Doing it in R

nSites <- 100

vegHt <- runif(nSites, 1, 3) # uniform from 1 to 3

psi <- plogis(-3 + 2*vegHt)

# Now we simulated true presence/absence for 100 sites

z <- rbinom(nSites, 1, psi)

## Now generate observations

p<- 0.6

J<- 3 # sample each site 3 times

y<-rbinom(nSites,J,p*z)

# This is the negative log-likelihood.

negLogLikeocc <- function(beta, y, x,J) {

beta0 <- beta[1]

beta1 <- beta[2]

p<- plogis(beta[3])

psi <- plogis(beta0 + beta1*x)

marg.likelihood <- dbinom(y, J,p)*psi + ifelse(y==0,1,0)*(1-psi)

return(-sum(log(marg.likelihood)))

}

starting.values <- c(beta0=0, beta1=0,logitp=0)

opt.out <- optim(starting.values, negLogLikeocc, y=y, x=vegHt,J=J,

hessian=TRUE)
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Summary Thoughts on Bayes vs non-Bayes

Both inference paradigms useful for analysis of hierarchical models

• Bayesian:

– Completely general methods for implementation (MCMC) which always

work. Sometimes BUGS implementations don’t work, so its good to

know how to do it.

– Takes more math/programming know-how????

– Sometimes slower due to more calculations

– Inferences are not asymptotic, apply to arbitrary n

– Prediction is more coherent – comes “for free”

• Classical:

– Integrated likelihood sometimes not feasible. (community model)

– But very accurate (no MC error)

– Automatic model selection (AIC)
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“Bayesian” Hierarchical Model??

•Hierarchical modeling is a conceptual and technical framework

for formulating models

• The method of inference is independent of model formulation

• HMs can be analyzed by Bayesian and non-Bayesian methods.

• HM 6= Bayesian!!! A model is not Bayesian or frequentist –

what you do to that model is Bayesian or frequentist.

• Models don’t have political views (people do)
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